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 1 
Abstract 2 

Snow is an important and complicated element in hydrological modelling. The traditional catchment 3 

hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-4 

suited tool for predicting conditions for which it has not been calibrated. Such conditions include 5 

prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new 6 

model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed 7 

spatial variability of precipitation (SD_G), is compared with the current snow distribution model used in 8 

the operational flood forecasting models in Norway. The latter model (SD_LN) has a fixed, calibrated 9 

coefficient of variation, which parameterizes a log-normal model for snow distribution. The two models 10 

are implemented in the already parameter parsimonious rainfall runoff model Distance Distribution 11 

Dynamics (DDD) and their capability for predicting runoff, SWE and snow covered area (SCA) are tested 12 

and compared for 71 Norwegian catchments. Results show that SD_G better simulates SCA when 13 

compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in 14 

that seasonal snow is melted out and the building up of “snow towers” and giving spurious positive trends 15 

in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SD_G is slightly 16 

inferior, with a reduction in Nash-Sutcliffe and Kling Gupta Criterion of 0.01, but it is shown that high 17 

precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE. 18 
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 1 
1 Introduction 2 
 3 
Snow is an important hydrological parameter in the northern hemisphere and in Norway approximately 4 

30 % of the annual precipitation falls as snow. Snow and snow related hydrology have a significant impact 5 

on nature and society in such regions. Seasonal snow ensures variation in outdoor activities and 6 

considerable investments in infrastructure for tourism and hydropower are dependent on stable seasonal 7 

snow. Apart from snow related hazards such as spring melt floods and avalanches, snow may negatively 8 

affect construction safety and traffic flow at airports, roads and in urban areas.  Information of snow 9 

conditions at the local, regional and national scale is therefore important for the early warning of hazards, 10 

but also for tourism, hydropower production planning and water resources management.  11 

Operational snow models have evolved differently for hydrology than for meteorology and avalanche 12 

warning. Whereas the model development in the latter two scientific disciplines usually include detailed, 13 

multi-layered, physically based process representations, snow models in hydrology are typically calibrated 14 

empirical relationships between snow variables and the modest model forcing at hand, i.e. snow 15 

accumulation and melt vs precipitation and  temperature. An example of such a calibrated relationship is 16 

the degree-day model for snowmelt (Hock, 2005; Ohmura, 2000), where snowmelt is a linear function of 17 

the difference between air temperature and a (often calibrated) temperature threshold for which there is 18 

no snowmelt. In practise, the degree-day factor is calibrated against runoff, and will hence account for a 19 

multitude of processes and scales. One reason for such a discrepancy in modelling approaches is that 20 

calibrated hydrological snow models have proved themselves at low temporal resolutions (i.e. 24h 21 

resolution (Anderson, 1976)) and for stationary climatic conditions. Another reason is that hydrological 22 

snow models are expected to provide simulations at the catchment scale, for which there are usually no 23 
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estimates of more non-standard hydrological model forcing such as, for example, wind and radiation. In 1 

addition, the governing equations for the physics of hydrology at the small scale have proven difficult to 2 

scale up in time and space to be relevant for catchment hydrology (Kirchner, 2006). 3 

For predictions in ungauged basins and in a changed climate, however, calibrated empirical relations in 4 

snow models cannot be expected to give reliable and useful results. As an example, Skaugen et al. (2015) 5 

used the Distance Distribution Dynamics (DDD) model (Skaugen and Onof, 2014) for predicting in 6 

ungauged basins with model parameters estimated from catchments characteristics. When analysing the 7 

deviations in performance between the calibrated and the regionalised versions of the DDD model, the 8 

regionalised degree-day factor for snowmelt and the coefficient of variation for the spatial distribution of 9 

SWE emerged as the parameters most responsible for poor regionalised results for runoff.  10 

In this study we will investigate how snow water equivalent (SWE), snow covered area (SCA) and runoff 11 

are simulated when an alternative method for parameterising the spatial distribution of SWE is 12 

implemented in a hydrological model. The method has all its parameters estimated prior to calibration and 13 

is described in Skaugen (2007) and has since been developed in Skaugen and Randen (2013). The method 14 

models the spatial probability density function (PDF) of SWE as a dynamic gamma distribution and is 15 

hereafter denoted SD_G (Snow Distribution_Gamma)).  SD_G was tested at small test sites and found to 16 

model the spatial moments of SWE and SCA well (Skaugen and Randen, 2013), but has, however, not 17 

been implemented in a hydrological model and hence not been tested for larger scales and as a tool in 18 

operational hydrology. A realistically modelled PDF of SWE is important for the temporal evolution of 19 

SWE, snowmelt and SCA (Luce and Tarboton, 2004; Essery and Pomeroy, 2004; Luce et al., 1999; Liston, 20 

1999; Buttle and McDonnel, 1987). Good simulation of the evolution of SCA is especially important since 21 
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it controls the runoff dynamics of the spring melt flood and is the basis for properly accounting the energy 1 

fluxes in land- surface schemes in atmospheric models (Helbig et al., 2015; Essery and Pomeroy, 2004; 2 

Liston, 1999). In addition, remotely sensed SCA is one of the few data measured at the catchment scale 3 

for which simulated hydrology can be compared, and represents hence a valuable independent data source 4 

to validate models.  5 

The parameters of SD_G are estimated solely from observed spatial variability of precipitation. Such 6 

information is available at many sites which makes it possible to use the method for prediction in ungauged 7 

basins. Downscaled climate changes projections may also provide such information so that effects of 8 

climate change on snow conditions and hydrology  may be assessed. In using such a method, the current 9 

dependency of calibration in  hydrological snow models is reduced.  10 

It is not straightforward to evaluate new process algorithms in, sometimes, heavily parameterized rainfall-11 

runoff models.  Due to the tendency for calibration parameters to compensate for data- and structural 12 

model errors (Kirchner, 2006; Beven and Binley, 1992), it can be difficult to identify the effect of changing 13 

an algorithm or parameterization from the calibrated results of the model (Clarke, 2011a). Kirchner (2006) 14 

points out the need to develop models that are minimally parameterized, and which therefore stand a 15 

chance of failing the tests they are subjected to, which is exactly the problem faced when assessing the 16 

introduction of new algorithms with fewer calibration parameters. Gupta et al. (2014) propose the use of 17 

large sample hydrology as a means for the testing of hypothesis and model structures, in order to a) arrive 18 

at conclusions more general than can be achieved using a single catchment, b) establish a range of 19 

applicability, and c) ensure sufficient information to enable the identification of statistically significant 20 

relationships.  In addition, a minimal use of calibration parameters should increase the efficiency in 21 
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isolating and demonstrating the effect of new algorithms and parameterizations (Kirchner, 2006). 1 

Consequently, in this study large sample hydrology and a parameter parsimonious model are used to 2 

investigate the suitability of a new model algorithm. 3 

We will implement the SD_G model in the parameter parsimonious DDD rainfall-runoff model. In DDD’s 4 

current snow routine the spatial PDF of SWE is modelled as the sum of uniform- and log-normally 5 

distributed snowfall events (Sælthun 1996, Killingtveit and Sælthun, 1995). The distribution is constant 6 

for up to a specified threshold of accumulated SWE (i.e. 20 mm). Each additional snowfall event is log-7 

normally distributed through a calibrated coefficient of variation (CV) and SWE is estimated for nine 8 

quantiles and added to previous quantile values. In this way, each additional snowfall event has a spatial 9 

distribution of a fixed shape (through the calibrated CV) regardless of its intensity. Moreover, the method 10 

implies perfect spatial correlation in that a new snowfall is distributed such that the quantiles with highest 11 

SWE always receives most SWE so that the CV of the sum of snowfall events remains a constant. A 12 

simple example demonstrates this: if the accumulation of snow 𝑍𝑍, is the sum of two snowfall events 𝑦𝑦,   13 

𝑍𝑍 = 𝑦𝑦1 +  𝑦𝑦2 where 𝑦𝑦~𝐿𝐿𝐿𝐿(𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦2) is log-normally distributed, then the mean of 𝑍𝑍 is 𝐸𝐸(𝑍𝑍) = 2𝜇𝜇𝑦𝑦 and the 14 

variance is 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) =  𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑦𝑦2 + 2𝐶𝐶𝐶𝐶𝑉𝑉(𝑦𝑦1,𝑦𝑦2). With perfect correlation the variance equals 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) =15 

 𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑦𝑦2 + 2𝜎𝜎𝑦𝑦2 (Haan, 1977, p.56) and it is easily seen that the that the coefficient of variation for 𝑍𝑍 16 

equals that of 𝑦𝑦, i.e 17 

𝐶𝐶𝑉𝑉𝑍𝑍 =
𝜎𝜎𝑍𝑍
𝜇𝜇𝑍𝑍

=
2𝜎𝜎𝑦𝑦
2𝜇𝜇𝑦𝑦

= 𝐶𝐶𝑉𝑉𝑦𝑦 18 

The spatial distribution of melt is constant and reduction in SCA occurs when the SWE associated with a 19 

quantile becomes zero. The fraction of snow-free areas is thus the sum of quantiles with zero SWE. This 20 
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snow distribution model is hereafter denoted SD_LN (Snow Distribution _Log-Normal) and, although 1 

SD_LN has been used operationally in Norwegian hydrology for many years, it has the feature of being a 2 

calibrated model and hence not suitable for climate change studies and for predictions in ungauged basins. 3 

In addition, an assumption of perfect spatial correlation and hence a fixed CV is not supported by 4 

observations. Timeseries of spatial measurements of SWE in Norway show that the spatial CV vary 5 

through the snow season (Alfnes et al., 2004; Skaugen, 2007). In Skaugen and Randen (2013) SD_LN 6 

was found inferior to SD_G in years for which it was not calibrated and recently Frey and Holzmann 7 

(2015) published a study that shows that a log-normal spatial distribution of SWE with a fixed CV of 8 

introduced so called “snow towers”. For high elevation areas, and for the highest quantiles of the 9 

distribution, snow survived the summer and accumulated to give an overall positive trend in SWE which 10 

was not observed. 11 

The main objective of this paper is to evaluate if a method for describing spatial PDF of SWE with 12 

parameters estimated a priori calibration is a suitable alternative for use in rainfall runoff models. We will 13 

compare simulated results of SWE, runoff and SCA simulated with DDD using the current model, SD_LN 14 

and with the alternative, SD_G for 71 catchments in Norway. Time series of satellite-derived SCA 15 

(MODIS, Moderate Resolution Imaging Spectroradiometer) is available for the catchments, so simulated 16 

runoff and SCA will also be compared against observed values.  17 

    18 

 19 
2 Method 20 
 21 
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The proposed method requires that we represent the spatial PDF of SWE by an analytical model. In the 1 

literature, many such models are proposed, especially for the period of time of maximum accumulation; 2 

such as the log-normal (Donald et al. 1995, Sælthun 1996), the gamma (Kutchment and Gelfan, 1996; 3 

Skaugen, 2007; Kolberg and Gottschalk, 2010; Skaugen and Randen, 2013) and the normal (Marchand 4 

and Killingtveit, 2004, 2005). Helbig et al. (2015) investigated the spatial PDF of snow depth for three 5 

large alpine areas and found that the gamma and the normal distributions were better suited than the log-6 

normal. In Alfnes et al. (2004), Skaugen (2007) and in Skaugen and Randen (2013), it was demonstrated 7 

through the repeated measurements of the same snowcourse during the accumulation and melting seasons 8 

that the spatial PDF of SWE changed it shape continuously during the periods of accumulation and 9 

melting. During the accumulation period, the spatial distribution of SWE would become less positively 10 

skewed as accumulation progressed and increasingly more positively skewed as melting progressed. Since 11 

we aim to have an estimate of the spatial PDF of SWE at all times during the snow season, we continue 12 

here the approach outlined in Skaugen (2007) and Skaugen and Randen in (2013), modelling the spatial 13 

PDF of SWE as a sum of gamma distributed correlated unit fields.  14 

2.1 Moments of spatial SWE 15 
 16 
We need, at all times, estimates of the spatial conditional mean, 𝐸𝐸(𝑍𝑍′) and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′), of 17 

accumulated SWE. The PDF of  𝑍𝑍′ does not contain zeros and is hence conditional on snow. For the non-18 

conditional distribution of SWE, which also includes zeros, the variable SWE is denoted 𝑍𝑍. The notation 19 

of 𝑍𝑍 will hereafter determine if we discuss the conditional or the non-conditional spatial distribution of 𝑍𝑍. 20 

The spatial  conditional PDF of SWE is modelled as a gamma distribution with shape and scale parameters:  21 
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𝜈𝜈 = 𝐸𝐸(𝑍𝑍′)2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′)
 and 𝛼𝛼 = 𝐸𝐸(𝑍𝑍′)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′)
                                                           (1) 1 

As in Skaugen and Randen (2013), the PDF of accumulated SWE is approximated by the sum of correlated 2 

gamma distributed unit fields, 𝑦𝑦(𝑥𝑥), where x represents space. For the remainder of this paper the unit 3 

𝑦𝑦(𝑥𝑥) is denoted 𝑦𝑦. The unit fields of snowfall are distributed in space according to a two-parameter gamma 4 

distribution, 𝑦𝑦 = 𝐺𝐺(𝜈𝜈0,𝛼𝛼0) with PDF: 5 

𝑓𝑓(𝑦𝑦) = 1
Γ(𝜈𝜈0)

𝛼𝛼0
𝜈𝜈0𝑦𝑦𝜈𝜈0−1𝑒𝑒−𝛼𝛼0𝑦𝑦,       𝛼𝛼0, 𝜈𝜈0,𝑦𝑦 > 0                                            (2) 6 

where 𝛼𝛼0 and 𝜈𝜈0 are parameters . The mean of the unit equals 𝐸𝐸(𝑦𝑦) = 𝜈𝜈0/𝛼𝛼0  and the variance equals 7 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦) =  𝜈𝜈0/𝛼𝛼02. When estimating the moments for the sum of 𝑛𝑛 units, 𝑍𝑍′(𝑛𝑛) =  ∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1   we have to take 8 

into account that the unit fields are correlated. This has no bearing on the mean, 𝐸𝐸(𝑍𝑍′) but affects the 9 

variance, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′), i.e: 10 

𝐸𝐸(𝑍𝑍′) = 𝑛𝑛 𝜈𝜈0
𝛼𝛼0

 =𝜈𝜈
𝛼𝛼
                                                                                (3) 11 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′) =  𝑛𝑛 𝜈𝜈0
𝛼𝛼02

+ 2∑ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑖𝑖,𝑦𝑦𝑗𝑗)𝑖𝑖<𝑗𝑗 = 𝑛𝑛 𝜈𝜈0
𝛼𝛼02

[1 + (𝑛𝑛 − 1)𝑐𝑐(𝑛𝑛)] = 𝜈𝜈
𝛼𝛼2

                            (4) 12 

where the function 𝑐𝑐(𝑛𝑛) is the average correlation over 𝑛𝑛 units.   13 

From Eq. (4) we see that if we have perfect and constant correlation between the 𝑦𝑦’s, 𝑐𝑐(𝑛𝑛) = 1, the 14 

variance of 𝑍𝑍′ equals 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′)  = 𝑛𝑛2 𝜈𝜈0
𝛼𝛼02

 and by Eq. (3) we have that the relationship between  the standard 15 

deviation, 𝜎𝜎𝑍𝑍′ and the mean, 𝐸𝐸(𝑍𝑍′) is a straight line with the slope equal to 𝜈𝜈0−0.5,  𝜎𝜎𝑍𝑍′ = 𝜈𝜈0−0.5𝐸𝐸(𝑍𝑍′) . On 16 

the other hand, if we have no correlation between the 𝑦𝑦’s, 𝑐𝑐(𝑛𝑛) = 0, the variance equals 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′)  = 𝑛𝑛 𝜈𝜈0
𝛼𝛼02

 17 

which gives a relationship between 𝜎𝜎𝑍𝑍′ and 𝐸𝐸(𝑍𝑍′)  as a curved line that departs from that of perfect 18 
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correlation by 𝑛𝑛−0.5, 𝜎𝜎𝑍𝑍′= (𝜈𝜈0𝑛𝑛)−0.5𝐸𝐸(𝑍𝑍′). The variance, however, is linearly related to the mean. 1 

Correlation between the units, 𝑐𝑐(𝑛𝑛)  gives a relationship between the mean and the standard deviation that 2 

is something between the two cases described above. A typical analytical approximation to the spatial and 3 

temporal correlation function for precipitation is an exponentially decaying function with either time or 4 

space as argument. Zawadski, (1973, 1987) found exponential decorrelation for rainfall for both time and 5 

space. As 𝑛𝑛 (number of summations) may be considered a variable akin to time, 𝑐𝑐(𝑛𝑛) is approximated by 6 

an exponential correlation function:   7 

𝑐𝑐(𝑛𝑛) = exp (−𝑛𝑛
𝐷𝐷

) ,                                                                     (5) 8 

where 𝐷𝐷 is the decorrelation range where the correlation equals 1/𝑒𝑒 (Zawadski, 1973).  9 

The variance of 𝑍𝑍’ can now, with eqs. (4) and (5), be expressed as: 10 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍′) = 𝐸𝐸(𝑍𝑍′) 1
𝛼𝛼0

[1 + (𝑛𝑛 − 1)𝑒𝑒𝑥𝑥𝑒𝑒(−𝑛𝑛/𝐷𝐷)]                                            (6) 11 

From measured, positive (i.e. not including zeros) precipitation over an area we can observe the 12 

relationship between the spatial mean and spatial variance of precipitation. Furthermore, we can estimate 13 

the two unknowns, 𝐷𝐷 and 𝛼𝛼0 from such data by nonlinear regression. Figure 1 a) shows a scatterplot of 14 

spatial mean and standard deviation of positive precipitation with a fitted function of the type Eq. (6). 15 

From Figure 1 b), where the spatial man and standard deviation are plotted in a log-log space, we see that 16 

the relationship is not that of a power law, as suggested in Skaugen and Randen (2013) and Skaugen and 17 

Andersen (2010), since a straight line does not represent the point cloud very well.   18 
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During the snow season, the snowpack may experience a series of melting and accumulation events and 1 

estimating the temporal variability of the spatial variance of SWE is clearly a challenge.  Furthermore, 2 

SCA varies throughout the season, which necessarily adds to this complexity. In this study SCA is set 3 

equal to 1 (full coverage) for every snowfall event, whereas a melting event implies a reduction in 4 

coverage. In the following subsections we will briefly address the estimation of the mean and variance of 5 

SWE for accumulation and melting events under different conditions of snow coverage. The derivation 6 

for accumulation events differs from that presented in Skaugen and Randen (2013) and is presented in 7 

detail. For melting events and for the estimation changes in SCA, however, only the resulting equations 8 

are presented since the full derivations can be found in Skaugen and Randen (2013).  9 

 10 

2.2 Moments of spatial SWE after an accumulation event  11 

From a single snowfall event of n units on a snow-free surface, the mean and the variance of the snow 12 

reservoir 𝑍𝑍’ are estimated according to eqs. (3) and (4). The parameters 𝑉𝑉0,  𝜈𝜈0 and 𝐷𝐷 are estimated from 13 

a priori analysis of the local variability of precipitation (see Figure 1). A mean of the units has been chosen 14 

as 𝐸𝐸(𝑦𝑦) = 𝜈𝜈0
𝛼𝛼0

= 0.1 𝑚𝑚𝑚𝑚, since 0.1 𝑚𝑚𝑚𝑚 is the smallest precipitation value measured by the Norwegian 15 

Meteorological Institute.  If there is an additional snowfall event of u units, the mean and the variance of 16 

the resulting snow reservoir are simply:  17 

The mean: 18 

 𝐸𝐸(𝑍𝑍𝑛𝑛+𝑢𝑢′ ) = (𝑛𝑛 + 𝑢𝑢) 𝑉𝑉0
𝜈𝜈0

                                                                     (7) 19 
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and the variance: 1 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝑛𝑛+𝑢𝑢′ ) = 𝜈𝜈
𝛼𝛼2

+  𝑢𝑢 𝜈𝜈0
𝛼𝛼02

[1 + (𝑢𝑢 − 1)𝑐𝑐(𝑢𝑢)],                                              (8) 2 

where 𝜈𝜈
𝛼𝛼2

 is the conditional variance prior to the accumulation event. In order to keep the notation simple 3 

we say that 𝑛𝑛 is the number of units at 𝑡𝑡 − 1 and 𝑢𝑢 is the number of units of the event at time 𝑡𝑡. 4 

Equations (7) and (8) are valid if 𝑆𝑆𝐶𝐶𝑆𝑆 = 1 for both events. If SCA prior to the second event has been 5 

reduced due to melting (𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡−1 <  1), we have to scale the contributions of 𝑛𝑛 and 𝑢𝑢 according to the 6 

change in SCA from,  𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡−1 <  1 to ,  𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡 = 1, hence: 7 

The mean 8 

𝐸𝐸(𝑍𝑍𝑛𝑛+𝑢𝑢′ ) = 𝑉𝑉0
𝜈𝜈0

(𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡−1(𝑛𝑛 + 𝑢𝑢) + 𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡𝑢𝑢)                                                (9) 9 

And the variance 10 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝑛𝑛+𝑢𝑢′ ) = 𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡−12 (
𝜈𝜈
𝛼𝛼2

+ 𝑢𝑢
𝜈𝜈0
𝛼𝛼02

([1 + (𝑢𝑢 − 1)𝑐𝑐(𝑢𝑢)])) + 11 

𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡2
𝜈𝜈0
𝛼𝛼02
𝑢𝑢([1 + (𝑢𝑢 − 1)𝑐𝑐(𝑢𝑢)])                                                    (10) 12 

 13 

2.3 Melting events 14 

Let the snow reservoir, consisting of n  units, be reduced by u  units after a melting event. The snow 15 

coverage before and after the melting event is 1−tSCA  and tSCA  respectively, where 1−< tt SCASCA . We 16 

set 1−tSCA as 1, so that tSCA is the relative reduction in snow coverage due to melting, and not the 17 
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catchment value. Reduction in snow coverage needs special attention regarding the conditional (𝑍𝑍’) and 1 

the non-conditional (𝑍𝑍) moments since we have to determine the spatial moments for the area of the new 2 

coverage tSCA  (not including zeros, i.e. conditional moments) and for the area which includes the 3 

previously covered part, 1−tSCA  (including zeros, i.e non-conditional moments).  4 

 5 

2.3.1 The spatial mean after a melting event 6 

The non-conditional mean after the melting event, is estimated as: 7 

𝐸𝐸(𝑍𝑍𝑛𝑛−𝑢𝑢) = (𝑛𝑛 − 𝑢𝑢) 𝜈𝜈0
𝛼𝛼0

                                                                  (11) 8 

and the conditional mean is  9 

𝐸𝐸(𝑍𝑍𝑛𝑛−𝑢𝑢′ ) = 𝐸𝐸(𝑍𝑍𝑛𝑛−𝑢𝑢)
𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

= 1
𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

(𝑛𝑛 − 𝑢𝑢) 𝜈𝜈0
𝛼𝛼0              (12) 10 

We note that the difference in conditional means before and after the melting event is  11 

𝐸𝐸(𝑍𝑍′𝑛𝑛) − 𝐸𝐸(𝑍𝑍′𝑛𝑛−𝑢𝑢) = 𝜈𝜈0
𝛼𝛼0
�𝑛𝑛 − (𝑛𝑛 − 𝑢𝑢) 1

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡
� = 𝜈𝜈0

𝛼𝛼0
(𝑢𝑢′)                                   (13) 12 

where 'u is the conditional number of melted units and describes the difference in units when the (relative) 13 

reduction in SCA is taken into account.  14 

 15 

2.3.2 The spatial variance after a melting event 16 
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Skaugen and Randen (2013) give a detailed derivation of the conditional spatial variance of SWE after a 1 

melting event. Here, only the final expression is reported: 2 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝑛𝑛−𝑢𝑢′ ) =  𝜈𝜈
𝛼𝛼2
− 2𝑢𝑢′𝑛𝑛 𝜈𝜈0

𝛼𝛼02
𝑐𝑐𝑚𝑚𝑚𝑚𝑡𝑡(𝑢𝑢′) + 𝑢𝑢′ 𝜈𝜈0

𝛼𝛼02
+ 𝑢𝑢′(𝑢𝑢′ − 1) 𝜈𝜈0

𝛼𝛼02
𝑐𝑐(𝑢𝑢′)                        (14) 3 

where  𝜈𝜈
𝛼𝛼2

 is the variance of 𝑍𝑍′ prior to the melting event, and 𝑐𝑐𝑚𝑚𝑚𝑚𝑡𝑡(𝑢𝑢′) is the  (negative) correlation between 4 

melt and SWE and is estimated as a linearly decreasing function of 𝑢𝑢’ and equal to:  5 

 𝑐𝑐𝑚𝑚𝑚𝑚𝑡𝑡(𝑢𝑢′) =  𝑢𝑢
′

𝑛𝑛
 ( 1
2𝑛𝑛

( 𝜈𝜈
𝛼𝛼2

𝛼𝛼02

𝑛𝑛𝜈𝜈0
+ 1 + (𝑛𝑛 − 1)𝑐𝑐(𝑛𝑛)),                                         (15) 6 

It is clear from Eq. (13) that an estimation of the change in SCA due to melting, which will be presented 7 

in the next subsection, is needed in order to assess 𝑢𝑢’ and consequently 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍𝑛𝑛−𝑢𝑢′ ) in Eq. (14). 8 

 9 

2.4 Estimating changes in snow covered area (SCA) 10 

After a snowfall event, the SCA for the area of interest (a catchment or a part of a catchment in the case 11 

of elevation bands) is set equal to 1.  For a melting event, however, the estimate of changes in SCA is 12 

more complex. The previous subsections suggest modelling the accumulated SWE as a gamma 13 

distribution, 𝑓𝑓𝑉𝑉, with parameters 𝜈𝜈 and 𝛼𝛼 derived from the estimated mean and variance as described above. 14 

In Skaugen and Randen (2013), also the spatial frequency of snowmelt, 𝑓𝑓𝑠𝑠 was modelled as a gamma 15 

distribution,  following the same the same principles as for accumulation, i.e that the moments can be 16 

estimated using eqs. (3) and (4) with 𝑢𝑢’ replacing 𝑛𝑛. At all times nu ≤' , which implies that until the final 17 

melting event occurs, 𝑓𝑓𝑠𝑠 is more skewed to the left than 𝑓𝑓𝑉𝑉. The correlation of snowmelt 𝑐𝑐(𝑢𝑢’) as a function 18 
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of intensity (𝑢𝑢’) has not yet been investigated in detail and is, in this study, modelled as that of 1 

accumulation.  Skaugen and Randen (2013) however, reported empirical evidence supporting such an 2 

assumption with the respect for the features of 𝑓𝑓𝑠𝑠, i.e. that the spatial distribution is generally skewed to 3 

the left and becomes less skewed as the intensity of melt increases. These features are confirmed by 4 

additional measurements of spatial snowmelt by Weltzien (2015).  5 

Figure 2 illustrates how the reduction in SCA due to a melting event is estimated. Since the energy 6 

requirements for transforming a snowpack into snowmelt is linearly related to snow depth (Dingman, 7 

2002), it is reasonable to assume that areas with the smallest values of SWE are the first to become snow 8 

free, i.e. we assume a perfect (negative) correlation between SWE and snowmelt. Since 𝑓𝑓𝑉𝑉 and 𝑓𝑓𝑠𝑠 are 9 

spatial frequency distributions of SWE and snowmelt respectively, the frequencies can be interpreted as 10 

number of locations and their integral as fractions of an area. In Figure 2, the value 𝑋𝑋 defines the value of 11 

SWE/snowmelt where the frequencies of the melt distribution, 𝑓𝑓𝑠𝑠, are higher or equal to the frequencies 12 

of the accumulation distribution, 𝑓𝑓𝑉𝑉. All locations with SWE values less than the value 𝑋𝑋 are hence left 13 

snow-free which constitutes a fractional area of ∫ 𝑓𝑓𝑉𝑉
𝑋𝑋
0 = 𝑉𝑉.  When the frequencies (number of locations) 14 

of  𝑓𝑓𝑉𝑉  are higher than those of 𝑓𝑓𝑠𝑠, only a fraction of these locations will be snow-free. The sum of these 15 

fractions amounts to ∫ 𝑓𝑓𝑠𝑠
∞
𝑋𝑋 = 1 − 𝑠𝑠, (see Figure 2). The total reduction in SCA after a melting event is 16 

thus:  17 

𝑆𝑆𝐶𝐶𝑆𝑆𝑉𝑉𝑟𝑟𝑟𝑟 = 𝑉𝑉 + 1 − 𝑠𝑠                                                                 (17) 18 

Recall that the reduction in SCA is relative, i.e. it is the reduction from the previous snow-cover which is 19 

also the probability space of both 𝑓𝑓𝑉𝑉 and 𝑓𝑓𝑠𝑠, and equal to 1. 20 
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 1 
 2 
 3 
2.5. The hydrological model 4 

 5 

The DDD model (Skaugen and Onof, 2014; Skaugen et al., 2015; Skaugen and Mengistu, 2015) is a 6 

rainfall runoff model written in the programming language R (www.r-project.org) and runs operationally 7 

at daily and 3-hourly time steps at the Norwegian flood forecasting service at the Norwegian Water 8 

resources and Energy Directorate (NVE). The DDD model introduces new concepts in its description of 9 

the subsurface and of runoff dynamics and is developed with the objective of having as many as possible 10 

of its model parameters estimated prior to calibration from  observed data such as maps and runoff 11 

characteristics. In its current version, the parameters of the modules for subsurface- and runoff dynamics 12 

are all estimated prior to calibration against runoff. Estimating parameters of the subsurface from 13 

estimated mean celerity and observed mean annual runoff is a new development and is described in 14 

Skaugen and Mengistu (2015). Input to the DDD model is precipitation and temperature. The model is 15 

semi-distributed in that the moisture-accounting (rainfall and the accumulating and melting of snow) is 16 

performed for ten elevation bands of equal area. The catchment averages of precipitation and temperature 17 

are distributed to the elevation bands using calibrated lapse rates. Snowmelt is estimated using a degree-18 

day model (Hock, 2005; Ohmura, 2000) where the melted amount is a linear function of the difference 19 

between actual air temperature and a calibrated threshold temperature for melting. The catchment 20 

averaged precipitation can be corrected in order to get the long-term water balance right. 21 
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The model parameters relevant for snow accumulation and melt which are estimated by calibration against 1 

runoff include 𝜃𝜃𝑆𝑆𝑉𝑉, which describes the spatial distribution of SWE, 𝜃𝜃𝑆𝑆𝑋𝑋 which is the degree- day factor 2 

and  𝜃𝜃𝑊𝑊𝑠𝑠, which is the maximum liquid water content in the snowpack  (see Table 1 of model parameters).  3 

Further details on the DDD model is found in the cited literature. Model parameters calibrated against 4 

runoff are hereafter denoted by 𝜃𝜃 with subscripts (e.g. 𝜃𝜃𝑆𝑆𝑉𝑉), in order to clearly distinguish between 5 

estimated and calibrated parameters. From Table 1 we see that altogether 11 model parameters can be 6 

calibrated.  7 

 8 

2.5 Test of SD_G in DDD 9 

 10 

We will evaluate the performance of SD_G, parameterised from from observed spatial variability of 11 

precipitation, implementing it in DDD (DDD_G) and compare performance with DDD_LN, in which 12 

SD_LN , with its calibration parameter 𝜃𝜃𝑆𝑆𝑉𝑉, is implemented. 13 

 The new parametrization of the subsurface is tested for 71 catchments distributed across  Norway (see 14 

Figure 3).  The catchments vary in latitude, size, elevation and surface cover (see histograms of selected 15 

catchment characteristics in Figure 4) and constitute thus a varied, representative sample of Norwegian 16 

catchments.  17 

The following procedure was followed: the models were initially calibrated using long time series of 18 

precipitation and temperature to simulate runoff using a Monte-Carlo Markov-Chain method (Soetart and 19 

Petzhold, 2010) written in R. The time series for precipitation and temperature are mean areal catchment 20 
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values extracted from the current, operational meteorological grid (1 x 1 km²) which provides daily values 1 

of precipitation and temperature for Norway from 1957 to the present day (see www.senorge.no).  This 2 

meteorological grid is denoted V1.  Recently, a new improved meteorological grid was developed, denoted 3 

V2, (Lussana et al. 2014a, Lussana et al. 2014b) which reduced much of the positive bias in precipitation 4 

characteristic of V1 (see Saloranta, 2012). The new meteorological grid (V2) in DDD gives reasonable 5 

simulated values of runoff without the need for a calibrated correction of the amount of precipitation (𝜃𝜃𝑃𝑃𝑃𝑃, 6 

see Table 1 for parameters of the DDD model). Areal averages of precipitation and temperature values are 7 

extracted for ten elevation zones which makes it possible to eliminate calibrated precipitation and 8 

temperature gradients (𝜃𝜃𝑃𝑃𝑚𝑚𝑉𝑉 and 𝜃𝜃𝑇𝑇𝑚𝑚𝑉𝑉). Three parameters associated with snow accumulation and melt (the 9 

correction factor for solid precipitation (𝜃𝜃𝑆𝑆𝑃𝑃 = 1.0), the threshold temperature for snowmelt (𝜃𝜃𝑇𝑇𝑠𝑠 = 0 °𝐶𝐶) 10 

and the threshold temperature for solid and liquid precipitation (𝜃𝜃𝑇𝑇𝑋𝑋 = 0.5 °𝐶𝐶) were fixed, thereby 11 

reducing the number of calibration parameters from 11 to 5. For the remaining 4 parameters, the calibrated 12 

values (from using V1 as input) are retained for 3 parameters (𝜃𝜃𝑊𝑊𝑠𝑠, 𝜃𝜃𝑣𝑣𝑟𝑟, and 𝜃𝜃𝑃𝑃𝑟𝑟𝑉𝑉), whereas for the 13 

DDD_LN model, 𝜃𝜃𝑆𝑆𝑋𝑋 and the parameter of interest for this study 𝜃𝜃𝑆𝑆𝑉𝑉, is recalibrated using V2 as input 14 

data.  In using such a procedure we assume that the 3 parameters which are calibrated using the V1 data 15 

(and, most likely, not optimal for the V2 data as input) will not favor either of the two compared model 16 

structures (calibrated (SD_LN)- and estimated (SD_G) spatial distribution of SWE). When recalibrating 17 

the 𝜃𝜃𝑆𝑆𝑉𝑉 with V2 data, we attempt to make it as difficult as possible to accept the new spatial frequency 18 

distribution of SWE. If we calibrated all 3 parameters (𝜃𝜃𝑊𝑊𝑠𝑠, 𝜃𝜃𝑣𝑣𝑟𝑟, and 𝜃𝜃𝑃𝑃𝑟𝑟𝑉𝑉)  using V2, we could risk that 19 

errors associated with the structures of SD_G and SD_LN were compensated for by the other 3 parameters, 20 

such that we could not isolate and evaluate the effect of implementing SD_G. Also for the DDD_ G model, 21 

The Cryosphere Discuss., doi:10.5194/tc-2016-43, 2016
Manuscript under review for journal The Cryosphere
Published: 19 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



19 
 

the degree-day factor 𝜃𝜃𝑆𝑆𝑋𝑋, was calibrated since correlation between this parameter and 𝜃𝜃𝑆𝑆𝑉𝑉 was revealed. 1 

It would hence be probable that a 𝜃𝜃𝑆𝑆𝑋𝑋 optimised using SD_LN with V1 would not be optimal for testing 2 

SD_G. 3 

With the procedure described above, we can compare the performances of the DDD model with calibrated 4 

PDF of SWE (DDD_LN ) and the DDD model with estimated PDF of SWE (DDD_G) with respect to 5 

runoff, SWE and SCA.  6 

 7 
3 Results 8 

3.1 Runoff 9 

Figure 5 shows different skill scores obtained for runoff simulations for the 71 catchments with DDD_LN  10 

(red crosses) and DDD_G (blue circles). ). Figure 5 a) shows the Nash-Sutcliffe efficiency criterion (NSE, 11 

Nash and Sutcliffe, 1970) and 5 b) the Kling-Gupta Efficiency criterion (KGE, Gupta, et al. 2009, Kling 12 

et al. 2012)  and 5 c-e) the three components of the KGE, correlation, bias and variability error, 13 

respectively. The variability error is given by the ratio of the coefficients of variation of simulated and 14 

observed runoff as suggested in Kling et al. (2012). The mean values of the skill scores for DDD_LN and 15 

DDD_G are shown as straight lines in the plots and in Table 2. We see from the Figure 5 and Table 2 that 16 

little precision in predicting runoff is lost when using DDD_G. The mean values for NSE, KGE, and the 17 

different elements of KGE are practically identical.  18 

 19 

3.2 SWE  20 
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Figure 6 shows an example of a timeseries of simulated SWE using DDD_G (blue) and DDD_LN (red).  1 

This example illustrates what was seen for most catchments with reliable occurrence of seasonal snow. 2 

SWE simulated with DDD_LN tends to survive the summers at the highest elevations, which results in a 3 

positive trend for SWE. Seasonal SWE simulated by DDD_G and DDD_LN is similar at the start of the 4 

time series but deviates increasingly as time proceeds.   Figure 7 a) shows a scatterplot of the mean 5 

simulated SWE (averaged over the timeseries) for the 71 catchments by the two models and it is clearly 6 

seen that SWE simulated by DDD_LN is higher than simulated by DDD_G although both precipitation 7 

and temperature are identical for the two models. From linear regression between SWE, precipitation and 8 

temperature with time we can estimate simple annual trends.  Figure  7 b, c, d)  shows plots of the slopes 9 

of the regression lines. Whereas both precipitation and temperature show very modest annual rates of 10 

change, both models simulate increasing SWE with time, but DDD_LN, on average, 5 times as much as 11 

DDD_G.  If we estimate that 100 days of solid precipitation represent the average accumulated SWE, the 12 

increase in SWE due to the positive trend in precipitation comes very close to the trend in SWE found for 13 

DDD_G. 14 

3.3 Snow covered area 15 

From almost 1500 optical satellite scenes from MODIS during the period 2001- 2015, SCA for each 16 

elevation band have been estimated for the 71 catchments. Many scenes are discarded due to insufficient 17 

light caused by the low solar angle during the Norwegian winter, but for each catchment, about 150 18 

estimates of SCA during the 15 years can be used for validation of the snow distribution models’ ability 19 

to simulate a realistic evolution of snow free areas during the snowmelt period. For each MODIS satellite 20 

scene, each pixel (500 X 500 meters) is assigned a SCA value between 0-100% coverage using a method 21 
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based on the Norwegian linear reflectance to snow cover algorithm (NLR) (Solberg et al. 2006). The input 1 

to the NLR algorithm is the normalized difference snow index signal (NDSI- signal) (Salomonsen and 2 

Apple, 2004). Figure 8 shows the root mean square error (RMSE) between observed and simulated 3 

catchment values of SCA for 69 catchments (two of the catchments did not have SCA observations). 4 

Although the mean RMSE does not differ much between the two models (mean RMSE = 0.14 for for 5 

DDD_G and mean RMSE = 0.15 for  DDD_LN) we can note that SCA is better estimated using SD_G 6 

for 46 out of 70 catchments (66%). Figure 9 shows a typical example where SD_G has estimates of SCA 7 

close to the observed especially during late spring. Naturally, the problem of “snow towers” of SD_LN 8 

influences its ability to simulate a realistic decrease in SCA since small fractions of the catchments remains 9 

snow covered at all times. We can also note, from Figure 9, that SD_LN appears to have a more realistic 10 

start of the reduction of SCA than SD_G which might be a consequence of that the log-normal distribution 11 

may be quite positively skewed. Such a distribution obviously has a higher frequency of small values of 12 

SWE and hence, give an earlier reduction in SCA.     13 

 14 
4 Discussion 15 

Table 2 shows that, according to the Nash-Sutcliffe and Gupta-Kling efficiencies, the models are almost 16 

identical with respect to the simulation of runoff. This implies that little performance is lost in simulating 17 

runoff by introducing the new procedure for modelling the spatial frequency distribution of SWE although 18 

there are one parameter less to calibrate.  A reduction in the number of parameters to calibrate reduces the 19 

dimensions of the parameter space and thus the parameter uncertainty. In addition, it makes the model less 20 

flexible and more dependent on its structure so that possible structural deficiencies more easily can be 21 
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identified (Kirchner, 2006).  These are very important points when the demands on hydrological models 1 

moves from just predicting runoff to reliable predictions for more elements in the hydrological cycle such 2 

as for example SWE and SCA. In addition, to properly assess the hydrological effects of climate change 3 

and to provide useful predictions for ungauged basins, we have to move towards the use of hydrological 4 

models with a minimum of calibration parameters.  5 

An important objective of this study, besides that of reducing the number of calibration parameters, is to 6 

investigate whether DDD_G gives a more realistic simulation of snow properties, such as a realistic 7 

temporal evolution of SWE and SCA. Figures 6 and 7 show that DDD_LN gives clear a positive trend for 8 

simulated SWE, whereas DDD_G gives a small positive trend in SWE that corresponds roughly to that of 9 

precipitation (recall that SWE is the accumulated solid precipitation during a period of time). It is notable 10 

that such an obvious erroneous simulation of SWE using SD_LN has so little impact on the precision of 11 

runoff predictions. A possible reason is that the surplus of snow, located at the highest elevations and for 12 

small areal fractions, will not have temperatures high enough, even during summer, to generate intense 13 

snowmelt affecting the precision of runoff simulations. It is, however, of concern that the method itself 14 

introduces trends that could easily be interpreted as a trend in SWE in a climatic study. This problem of 15 

“snow towers” in models using a log-normal distribution for SWE with a fixed, calibrated CV has recently 16 

been addressed in the literature (Frey and Holzmann, 2015).  In Norway, using such a snow distribution 17 

model with the well known Swedish rainfall-runoff model, HBV (Hydrologiska Bråns 18 

Vattenbalansmodell, (Bergström, 1992)) has led to the operational procedure of deleting the remaining 19 

snow reservoir at the end of summer. Such a procedure clearly constitutes an example of a model working 20 

well (with respect to runoff) but not for the right reasons. This point is further illustrated when we focus 21 

The Cryosphere Discuss., doi:10.5194/tc-2016-43, 2016
Manuscript under review for journal The Cryosphere
Published: 19 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



23 
 

on one of the catchments that gives better NSE values using DDD_LN than DDD_G. The Masi catchment 1 

(5543 km2) is located in northern Norway and is relatively flat (90 % of its area is located below 600 2 

m.a.s.l and its minimum and maximum elevation is 370 and 1085 m.a.s.l respectively) so that the snow 3 

melt season is quite short and intense. Figure 10 a) shows the simulation of SWE using SD_LN with 4 

optimised CV (CV= 0.88) which gave a NSE value for runoff of NSE=0.75 and using SD_G which gave 5 

a NSE value for runoff equal to NSE=0.72. In Figure 10 b) we have adjusted the CV value from CV=0.88 6 

to CV=0.1 and the simulation of SWE using SD_LN no longer exhibit the very strong positive trend seen 7 

in Fig. 10 a), looks more realistic and very similar to that of SD_G. The precision of runoff simulation 8 

was, however affected and the NSE value dropped from NSE= 0.75 to NSE= 0.60. A reasonable 9 

conclusion may thus be that the slightly higher values for NSE and KGE using SD_LN is at the expense 10 

of unrealistic values of SWE. 11 

Figure 8 shows that in general, SCA is better simulated using SD_G than SD_LN. From figures 8 and 9 12 

we see that the “snow towers”, or heavy tails of the optimised accumulation distribution produced by 13 

SD_LN make a complete melt-out of the snow reservoir very difficult. SD_G, on the other hand, provides 14 

an accumulation distribution without the heavy tail, which appears as a better choice with respect to the 15 

simulation of both SWE and SCA. A more realistically simulated SCA is important for many applications. 16 

In overparameterized rainfall runoff models, the optimal runoff simulation is often a system of 17 

compensating errors in states (i.e. soilmoisture and  SWE) and updating one of  the states from 18 

observations may, in fact, deteriorate the simulation result because the balance of errors is disturbed 19 

(Parajka et al. 2007). Updating of snow- and hydrological models using observed SCA is hence dependent 20 

on realistic simulations of SCA. A realistic simulation of SCA is also necessary for the properly accounting 21 
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of energy fluxes over an area partly covered by snow (Liston, 1999; Essery and Pomeroy, 2004) and is 1 

hence important for the assessment of hydrological impacts of climate change. Without realistically 2 

simulated SCA, we cannot expect credible simulations for climate projections for neither runoff dynamics 3 

nor energy fluxes.     4 

SWE is represented here as the sum of correlated (in time) spatial variables (solid precipitation). 5 

Precipitation events as snow is assumed to be gamma distributed in space with parameters varying with 6 

intensity.  The parameters, scale, 𝛼𝛼0 and decorrelation length 𝐷𝐷 are estimated from observed spatial 7 

moments of precipitation. Recall that the shape parameter 𝜈𝜈0, is just set as one tenth of 𝛼𝛼0 through the 8 

relation 𝐸𝐸(𝑦𝑦) = 𝜈𝜈0
𝛼𝛼0

= 0.1 𝑚𝑚𝑚𝑚. From Figure 1 we see that the variance levels off at a certain spatial mean 9 

intensity, and even decreases. The presented model captures this observed feature since the variance will 10 

cease to increase as the correlation decreases with intensity (number of summations). For uncorrelated 11 

events, we finally have a sum of independent events. According to the central limit theorem, such a sum 12 

will have a normal distribution. The shape parameter of 𝑦𝑦, 𝜈𝜈0 and the correlation determines the rate of 13 

the convergence to a normal distribution. For example, if the decorrelation range is long, then more 14 

summations are needed for the spatial frequency distribution of SWE to approach a normal distribution. 15 

The literature shows that empirical spatial distribution of SWE has a tendency to be positively skewed.  16 

This is especially the case for many observations of SWE in Norway in high alpine areas (Alfnes et al. 17 

2004; Marchand and Killingtveit, 2004; Marchand and Killingtveit 2005). For more lowland and forested 18 

areas, the distribution tend to be more normal (Alfnes et al, 2004; Marchand and Killingtveit, 2004; 19 

Marchand and Killingtveit 2005). In our modelling framework, this would imply that we would expect 20 

small shape parameters and long decorrelation lengths for mountain areas, and larger shape parameter 21 
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together with short decorrelation lengths for lower lying forested areas.  Table 3 show correlations and 1 

their significance (p-values) between the parameters 𝛼𝛼0 and 𝐷𝐷 with catchment values of fraction of bare 2 

rock, fraction of forest, mean elevation and catchment area. 3 

 We see that 𝛼𝛼0 is significantly correlated to the mountain/forest highland/lowland indices as expected. 4 

The decorrelation length 𝐷𝐷 is weakly correlated to the mean elevation in a way implying shorter correlation 5 

lengths at high altitudes, i.e. contrary to what is expected from reported shapes of the PDF of SWE, and 6 

uncorrelated to the other indices. It is promising, and somewhat unexpected, that correlation between 7 

𝛼𝛼0(𝜈𝜈0) and catchment characteristics supports our theory so clearly since the location of Norwegian 8 

precipitation gauges, which is has a very poor representation at high elevations (Dyrrdal et al. 2012; 9 

Saloranta, 2012), was not expected to discriminate this behaviour very well. The somewhat confusing 10 

results of the decorrelation length, suggests a dedicated study using a more dense network of precipitation 11 

gauges.   12 

As mentioned in section two, many models for the spatial distribution of SWE have been proposed in the 13 

literature (i. e. normal, gamma, log-normal, mixed log-normal). The diversity in distributions is often 14 

addressed to the physical processes responsible for the shape of the spatial distribution of SWE, which 15 

include wind, during and after the snowfall, spatial variability of precipitation and topographic features. 16 

This topic is continuously debated in the literature (Scipion et al. 2013; Clark et al., 2011; Mott et al., 17 

2011; Lehning et al., 2008; Skaugen, 2007; Liston, 2004) and, in addition, various spatial scales and 18 

landscape types interact and further complicate the matter (Liston, 2004; Alfnes et al. 2004; Marchand 19 

and Killingtveit, 2004; Marchand and Killingtveit, 2005; Blöschl, 1999). A major problem is that the 20 

spatial distribution of snow and SWE is very hard to measure at the appropriate scale, i.e. catchment scale, 21 
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which often covers different elevations and both forested and open (alpine) areas. Various airborne 1 

observation techniques such as laser scan (Melvold and Skaugen, 2013) and passive microwave 2 

(Vuyovich, 2014) are promising but are restricted by landscape features such as vegetation and topography 3 

and the state of the snow (wet/dry). Consequently, investigations on the spatial distribution of SWE has 4 

to rely on in situ measurements which seldom covers entire catchments. In this study, in situ information 5 

(the spatial variability of solid and liquid precipitation), is obtained from the station network of the 6 

Norwegian Meteorological Service, which measures precipitation at 2 m above ground. It is highly 7 

probable that the observed spatial variability, measured at such near-surface, captures information of the 8 

influence of the wind on precipitation in general and on snowfall in particular. This assumption is justified 9 

by the significant and relatively high correlations seen in Table 3 between the scale parameter (and hence, 10 

in our case, the shape parameter) of the distribution of 𝑦𝑦 to landscape features such as elevation and 11 

vegetation and suggests a sensitivity to the exposure of wind. Johansson and Chen (2003) demonstrate the 12 

influence of wind speed on the spatial distribution of precipitation and Mott et al. (2011) and Lehning et 13 

al. (2008) show that near-surface wind fields highly influence snow distribution patterns through 14 

preferential deposition.  15 

The method presented in this study does not include redistribution of SWE due to wind as a driving force 16 

shaping the spatial frequency distribution of SWE at the catchment scale. Some authors suggest that this 17 

process occur on a spatial scale much smaller than the catchment scale (Melvold and Skaugen, 2013; 18 

Liston, 2004). In Figure 9 we see that SD_LN show a better simulation of SCA for the start of the melting 19 

period than SD_G for, at least, two of the years. The reason to why SD_LN simulates the initial 20 

development of snow-free areas better  than SD_G is probably that SD_LN is generally more positively 21 
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skewed than SD_G, and has, hence, a higher frequency of small values of SWE that melts quickly. 1 

Whereas the distribution of SD_G, in general, seem to be more appropriate, a fraction of the catchment  2 

should perhaps be populated with small values of SWE in order to simulate this observed initial 3 

development of snow-free areas. By including redistribution due to wind, we might produce areas of 4 

shallow SWE, such as over wind exposed ridges which are known to become free of snow rather early in 5 

spring.  6 

Finally, it is important to keep in mind that this study aims at determining the spatial frequency distribution 7 

of SWE for elevation bands for a catchment. These areas may comprise several square kilometres. The 8 

spatial distribution of SWE for distributed hydrological modelling, i.e.  simulating the amount of SWE at 9 

specific locations, is another, and much more challenging, task which involves taking into account very 10 

small scale (< 25 m according to Lehning et al. 2008) landscape features and their complex relation to 11 

accumulation, melting and redistribution of SWE.   12 

 13 

5 Conclusions 14 

In this paper a method for estimating the spatial frequency distribution of  SWE is implemented in the 15 

parameter parsimonious rainfall- runoff model DDD. The new method, first described by Skaugen (2007) 16 

and further developed by Skaugen and Randen (2013), has its parameters estimated from observed spatial 17 

variability of precipitation measured from precipitation gauges.  The new method (SD_G) has hence no 18 

parameters to be optimized from calibration against runoff unlike the current operational snow distribution 19 

routine (SD_LN), which has one calibration parameter. The new method gives a dynamic presentation of 20 

the distribution of SWE, which, at the start of the accumulation season may be positively skewed, but 21 
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converges to a more symmetrical distribution as the accumulation season progresses. The   parameters of 1 

the method show significant correlations with catchment characteristics discriminating between sheltered 2 

and wind exposed areas. 3 

SD_G is tested for 71 catchment in Norway and little loss in precision of predicted runoff is seen when 4 

skill is measured with the Nash-Sutcliffe and Kling-Gupta efficiency criteria. SWE is simulated more 5 

realistically in that the seasonal snow is melted out every year and no trend in SWE is observed, which is 6 

consistent with the absence of trends in precipitation and temperature. The current operational routine for 7 

snow distribution (SD_LN), however, displays a tendency to produce ever increasing “snow towers” (Frey 8 

and Holzmann, 2015), which in turn gives the erroneous impression of an increasing trend in SWE. Such 9 

a behaviour can be remedied by adjusting the optimised CV value but at the expense of the precision of 10 

simulated runoff. The simulated SCA for both SD_G and SD_LN is compared to MODIS derived SCA 11 

and SD_G has the lower RMSE. The difference in simulated SCA between the two models is especially 12 

seen for median to low values of SCA. SD_LN can be sees to simulate better SCA at the beginning of the 13 

melt season, suggesting that SD_G has a too low frequency of low SWE values.    14 

 15 
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http://www.nve.no/en/Water/Data-databaser/Real-time-hydrological-data/ and historical data is freely 1 

available at request to hydrology@nve.no. 2 
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Table1. Parameters of the DDD model with comments and method of estimation. Some parameters (denoted with a *) have 1 
fixed values obtained through experience in calibrating DDD for gauged catchments in Norway. These values are within the 2 
recommended range for the HBV model (Sælthun,1996). Other parameter values are assigned standard values as suggested in 3 
the literature. The GIS analyses are carried out using the national 25 X 25 m DEM (www. statkart.no). Parameters in bold are 4 
calibrated.  5 

Parameter Comment Method of est. Value Ref 

Hypsograpic curve 11 values describing the quantiles 
0,10,20,30,40,50,60,70,80,90,100 

GIS   

𝜽𝜽𝑾𝑾𝑾𝑾 [%] Max liquid water content in snow Calibrated (V1) 5  

Hfelt Mean elevation of cathment GIS   

𝜃𝜃𝑇𝑇𝑚𝑚𝑉𝑉 [°C/100 m] 
  

Temperature lapse rate for (pr 100 
m) 

Standard value 0.0  

 𝜃𝜃𝑃𝑃𝑚𝑚𝑉𝑉  [mm/100 m]
   

Precipitation gradient (mm per 100 
m) 

Standard value 0.0  

𝜃𝜃𝑃𝑃𝑃𝑃 Correction factor for precipitation  Standard value 1.0  

𝜃𝜃𝑆𝑆𝑃𝑃    Correction factor for precipitation as 
snow 

Standard value 1.0  

𝜃𝜃𝑇𝑇𝑋𝑋  [°C] Threshold temperature rain /snow Standard value 0.5  

𝜃𝜃𝑇𝑇𝑆𝑆  [°C] Threshold temperature melting / 
freezing 

Standard value 0.0  

𝜽𝜽𝑪𝑪𝑪𝑪  [mm/°C/day] Degree-day factor for melting snow Calibrated (V1)   

𝐶𝐶𝐺𝐺𝑚𝑚𝑉𝑉𝑃𝑃   [mm/°C/day] Degree-day factor for melting glacier 
Ice 

* 1.5x𝜽𝜽𝑪𝑪𝑪𝑪 Sælthun 
(1996) 

𝐶𝐶𝐶𝐶𝐶𝐶 [mm/°C/day] Degree-day factor for refreezing  * 0.02 Sælthun 
(1996) 

 Area[m2] Catchment area GIS   

maxLbog[m] Max of distance distribution for bogs GIS   

midLbog[m] Mean of distance distribution for 
bogs 

GIS   

Bogfrac Fraction of bogs in catchment GIS   

Zsoil Areal fraction of zero distance to the 
river network for soils 

GIS   

Zbog Areal fraction of zero distance to the 
river network for bogs 

GIS   

𝐿𝐿𝐶𝐶𝐿𝐿 Number of storage levels Standard value 

 

5 Skaugen and 
Onof (2014) 
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𝜽𝜽𝒄𝒄𝒄𝒄𝒄𝒄 [mm/°C/day] Degree day factor for 
evapotranspiration  

Calibrated (V1)   

𝐶𝐶 Ratio defining field capacity  Standard value 

 

0.3 Skaugen and 
Onof (2014) 

𝛿𝛿 Shape parameter of gamma 
distributed recession characteristic 

Estimated from  
recession 

  

𝛽𝛽 Scale parameter of gamma 
distributed recession characteristic 

Estimated from  
recession 

  

𝜽𝜽𝑪𝑪𝑪𝑪  Coeff. of variation for spatial 
distribution of snow 

Calibrated (V2)   

𝛼𝛼0 Scale parameter of unit precipitation Estimated from 
observed spatial 
variability of 
precipitation 

  

𝐷𝐷 Decorrelation length of spatial 
precipitation 

Estimated from 
observed spatial 
variability of 
precipitation 

  

𝜽𝜽𝒗𝒗𝒓𝒓  [m/s] Mean celerity in river. Calibrated from 
(V1) 

  

𝑚𝑚𝑅𝑅𝑟𝑟[m] Mean of distance distribution of the 
river network 

GIS   

𝑠𝑠𝑅𝑅𝑟𝑟[m] Standard deviation of distance 
distribution of the river network 

GIS   

𝐶𝐶𝑅𝑅𝑚𝑚𝑉𝑉𝑚𝑚[m] Max of distance distribution in river 
network 

GIS   

𝑚𝑚𝑆𝑆[mm] Mean of subsurface water reservoir Estimated from  
recession 

  

�̅�𝑅[m] Mean of distance distribution for 
hillslope 

GIS   

𝑅𝑅𝑚𝑚𝑉𝑉𝑚𝑚[m] Max of distance distribution for 
hillslope 

GIS   

Glacfrac Fraction of bogs in catchment GIS   

𝑚𝑚𝐺𝐺𝑚𝑚[m] Mean of distance distribution for 
glaciers 

GIS   

𝑠𝑠𝐺𝐺𝑚𝑚[m] Standard deviation of distance 
distribution for glaciers  

GIS   

Areal fraction of  
glaciers in elevation 
zones 

10 values GIS   

 1 
 2 
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Table 2 .Mean values of skill scores obtaind with simulating with DDD_G and DDD_LN for 71 catchments. KGE_r measures 1 
correlation, KGE_b, the bias error and KGE_g the variability error. All skill scores have an ideal value of 1. 2 

 NSE KGE KGE_r KGE_b KGE_g 

DDD_G 0.64 0.70 0.85 0.85 1.02 

DDD_LN 0.65 0.71 0.85 0.84 0.99 

 3 

 4 

Table 3. Spearman correlations between model parameters and catchment characteristics indicating alpine and lowland areas 5 

where the spatial distribution of SWE is expected to vary. The bracketed numbers indicate significance (p-value) 6 

 

 

%Forest %Bare rock Mean elevation Catchment size 

𝛼𝛼0 0.34 (0.00) -0.40 (0.00) -0.35 (0.00) -0.28 (0.02) 

𝐷𝐷 0.13 (0.29) -0.14 (0.24) -0.25 (0.03) -0.15 (0.19) 

  7 
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Figure captions 1 
 2 
Figure 1. Scatter plot of the spatial mean and spatial standard deviation of observed precipitation over a catchment.  3 

Equation (6) is fitted to the data by non-linear regression (red line). Bottom panel shows the scatter plot in log-log.  4 

Figure 2. Schematic of how changes in SCA is estimated. 𝑓𝑓_𝑠𝑠 and 𝑓𝑓_𝑉𝑉 are the spatial frequency distributions (PDF) 5 

of snowmelt and accumulation respectively. 𝑠𝑠, 1 − 𝑠𝑠, 𝑉𝑉 and 1 − 𝑉𝑉 are partial integrated values of the PDFs.  6 

Figure 3. Location of the 71 catchments used to evaluate the new subsurface routine 7 

Figure 4. Histograms of catchment characteristics for the 71 catchments. a) mean of the hillslope distance 8 

distribution, �̅�𝑅, b) areal percentage of lakes, c) areal percentage of bogs, d) catchment area , e) mean elevation, f) 9 

areal percentage of glaciers, g) areal percentage of forests and h) areal percentage of bare rock. 10 

Figure 5. Skill scores for DDD_G (blue circles) and DDD_LN (red crosses) for 71 Norwegian catchments. Mean 11 

skill score values are shown in horizontal lines (same color code).a) NSE, b) KGE, c) KGE_r (correlation), d) 12 

KGE_b (bias) and e) KGE_g (variability error). 13 

Figure 6. Time series of simulated SWE using DDD_G (blue line) and DDD_LN (red line) for  catchment Tansvatn 14 

in Southern Norway. 15 

Figure 7. Scatter plot of mean SWE simulated with DDD_G and DDD_LN for 71 catchments (a), scatterplot of 16 

annual slope of SWE b), annual slope of precipitation c) and temperature d). 17 

Figure 8. Root mean square error of SCA for DDD_G (blue) and DDD_LN (red). Moving average of RMSE and 18 

the mean RMSE are shown with the same color code. 19 

Figure 9. Time series of simulated SCA with DDD_G (blue) and DDD_LN (red) together with MODIS derived 20 

SCA (green circles) for  catchment Tansvatn in Southern Norway. 21 
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Figure 10. Time series of simulated SWE for the Masi catchment in northern Norway with DDD_G (blue) and 1 

DDD_LN (red). In a) SWE is simulated with optimised CV=0.77, which gives a NSE=0.75. In b) SWE is simulated 2 

with adjusted CV=0.1 which gives a NSE=0.60. Using DDD_G gives a NSE=0.72.  3 

  4 
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Fig 1 3 
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Fig 2 3 
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Fig 3 3 

 4 

  5 

The Cryosphere Discuss., doi:10.5194/tc-2016-43, 2016
Manuscript under review for journal The Cryosphere
Published: 19 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



45 
 

 1 

 2 

Fig 4 3 
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Fig 5 2 
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Fig 6 3 
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Fig 7 3 
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Fig 8 3 
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Fig 9 3 
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Fig 10 2 
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